If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(P)=-16P^2+800P-4000
We move all terms to the left:
(P)-(-16P^2+800P-4000)=0
We get rid of parentheses
16P^2-800P+P+4000=0
We add all the numbers together, and all the variables
16P^2-799P+4000=0
a = 16; b = -799; c = +4000;
Δ = b2-4ac
Δ = -7992-4·16·4000
Δ = 382401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{382401}=\sqrt{81*4721}=\sqrt{81}*\sqrt{4721}=9\sqrt{4721}$$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-799)-9\sqrt{4721}}{2*16}=\frac{799-9\sqrt{4721}}{32} $$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-799)+9\sqrt{4721}}{2*16}=\frac{799+9\sqrt{4721}}{32} $
| -6x+6x+35=11x-5= | | x+3x=x+6 | | f(0)=5(0)+3 | | 3(x+4)+x=2(x+4)+4 | | 7(d2)=5(d+2) | | 7(d2)=5(d+2) | | -6(x+1)+14=23+5 | | 5(13-5^4x-2)=4 | | 2(5x-2)=2(9+3) | | -5-s=3 | | 2-2/(x-1)^2=0 | | 2(x-1)^2=2 | | .5(16+x)=42 | | 2a-3=3a-2 | | 34-4x-πx=0 | | 3(3y-2)=35 | | -4-x/3=8 | | 3b^-5b+1=0 | | 59(g+18)=16g+3 | | 3(x0.8)=4x+4 | | x÷9+3=3 | | -3n-12=3(-n-4) | | 7-6(n+5)=-3n-38 | | 3/2m+8=17 | | 7w6=3(w+6) | | 7-6(x+5)=-3x-38 | | -25/2a-6=29 | | 39-3n=6-(4n-3) | | 4K-3+7-10k=k | | -(25)/(2)a-6=29 | | 4(x+2)+4=32. | | -(1)/(40)(r+40)-(1)/(20)(2r+22)=(2)/(5) |